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We describe an approximation method to solve the probability density function transport equation, i.e., the
Liouville equation, which is encountered in the evolution of uncertainty of the initial values of dynamical
systems. A state-space based method is formulated using a least-squares technique that preserves the parabolic
nature of the Liouville equation and is flexible in terms of accuracy of representation. This method is based on
a global approximation in terms of analytical elementary functions with unknown parameters, whose evolution
equations are determined by a global least-squares approximation. The realizability conditions of the probabil-
ity density, i.e., the non-negativity and normalization conditions are enforced at all times. The method is
successfully evaluated in a number of scenarios including the uncertainty evolution in a system governed by a
Riccati equation and a particle moving in a fluid under the influence of Stokes drag force. The results obtained
in our examples exhibit a reasonable good agreement when compared with the solution of the probability
transport equation using the method of characteristics. The cost of the method is proportional to the cost of
solving the deterministic system and the number of parameters used to approximate the probability density
function, a feature that can make the present method very advantageous in comparison with other methods in
problems involving a large number of dimensions.
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I. INTRODUCTION

Chaotic solutions of deterministic systems of differential
equations can be studied statistically using a classical statis-
tical description based on probability density functions
�PDF�. In this approach, as opposed to working with stochas-
tic differential equations, a transport PDF equation �TPE� is
derived from the governing equations of the system. In the
case of evolution of initial or propagation of boundary data
uncertainty through a deterministic system, the PDF problem
can be stated through the Liouville equation �1–5�. The main
objective of this paper is to develop a method to efficiently
approximate the solution of the Liouville equation encoun-
tered in the evolution of uncertainties in initial conditions.

We consider a system governed by ordinary differential
equations, given by

dX

dt
= F�X,t� , �1�

where X�t� is a vector and F is a vector function. This de-
terministic system can be solved given the initial value X�t
=0�=Xo. When uncertainty in the initial value exists, X0 be-
comes a random vector with known distribution. Sampling
independent initial conditions, X0, from this distribution
leads to realizations of the trajectories X�t� through Eq. �1�.
The one-time PDF associated with this system of equations
is denoted by P�� ; t�, where �= ��1 ,�2 , . . . ,�N� is the state-
space vector of random variables X= �X1 ,X2 , . . . ,XN�, and

semi-colon is used to denote the fact that P depends para-
metrically on time.

The transport equation for P�� ; t�, known as the Liouville
equation, can be obtained using continuity of probability in
state space, giving

�P

�t
+

�

��
�F��,t�P� = 0. �2�

Summation with respect to the individual elements, �i with
i=1. . .N, is implied in Eq. �2�. Many practical problems of
interest lead to large state-space dimensions and insurmount-
able difficulties arise when trying to solve this high-
dimensional equation. In other words, increasing computa-
tional cost associated with the additional dimensionality of
the PDF �one dimension for each state-space variable� acts as
an obstacle in almost all practical cases where there is no
analytical solution for this equation. Direct approximation
methods, such as the method of characteristics �MC� �2,6,7�,
finite-difference, finite-volume, finite-element, and spectral
methods, directly applied to the space of independent vari-
ables �, in order to carry out the space discretization, lead to
tremendously large computational problems that are imprac-
tical to solve with current computational resources unless the
state-space dimension is very small �8,9�. Therefore, in prac-
tice, one needs to consider approximate methods.

The Liouville equation is a special case of the Fokker-
Planck equation where the diffusion term is absent �10�.
Generally, the approximate methods to solve this equation
are limited to the moment methods or Lagrangian particle-
based methods. However, the former suffers from large ac-
curacy degradation in situations where the PDF develops a*Corresponding author: cpantano@uiuc.edu
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multimodal structure since a finite number of moments, by
themselves, are not generally large enough to recover the
shape of the PDF. These PDF’s typically describe bistable or
metastable states of the system that must be accurately cap-
tured in order to make correct predictions. When this occurs,
many computational approaches, apart from direct methods,
exhibit large accuracy degradation. The particle-based
method is the most popular technique used to solve Eq. �2�
since it can deal with a large number of state-space variables;
however the cost effectiveness of this method is strongly
dependent on the nature of the system of equations.

Approximate methods to solve Fokker-Planck type equa-
tions include the polynomial chaos �PC� expansion method
�11–15�, the quadrature method of moments �QMOM�
�16,17� and the direct quadrature method of moments �DQ-
MOM� �18–22�. The polynomial chaos family of methods
avoid working with the PDF, and instead they operate di-
rectly with a spectral representation in terms of random vari-
ables. This approach generally leads to algorithms that have
a high computational cost in high-dimensional state spaces
and its range of applicability is limited to problems with
moderate nonlinearities �23�. On the other hand, DQMOM,
where the PDF is approximated as a sum of Dirac’s delta
functions with evolving parameters, has a number of desir-
able advantages. This includes a finite and predetermined
cost which is given by the presumed function form and ex-
hibit reasonable capability to adaptation. However, the use of
generalized functions �Dirac’s delta function� mandates the
use of moment methods and this inevitably introduces the
limitations of the Hausdorff moment problem �24�, which
affect the ability to reconstruct the PDF from its known mo-
ments. Other approaches not using the delta function rely on
a linear combination of smooth partial PDFs �25�, where the
governing equations for the weights and partial PDFs are
derived by a separation-of-variables technique. Most of these
global approximation techniques can be consider as
Rayleigh-Ritz methods which differ by the choice of global
approximation function and the type of minimization state-
ment being used to derive the equations �26�. These methods
are widely used in the analysis of vibrations in structures as
well as in quantum chemistry to solve differential equations
when the true solutions are intractable or exceedingly com-
plex.

According to the definition of the PDF, any approximation
method must satisfy at least two realizability conditions,
which are the non-negativity property,

P��;t� � 0, �3�

and the normalization condition

�
−�

�

P��;t�d� = 1, �4�

at every instant in time. For the PDF model to be a realistic
probability measure, all moments must also exist. From a
modeling point of view, an approximation fidelity improves
and its cost decreases if some knowledge about the behavior
and dependence of a solution is available. This can be prior
knowledge, or information obtained by solving the problem

with increasingly accurate approximations �the usual prac-
tice�. This observation can be exploited in two ways when
dealing with PDFs. First, the general shapes of many PDFs
encountered in practice have been measured experimentally
to a good degree of accuracy and furthermore, it has been
observed that the state space of the random variables is not
fully sampled by the PDF �27�. This observation can be used
advantageously when designing state-space based approxi-
mations. In many cases, very accurate techniques are only
required when the interest is focused on the precise behavior
of the tails of the PDF or, equivalently, the high-order mo-
ments of the random variables. When this is the case, the
computational solution can be very expensive if no prior
knowledge of the shape of the PDF is available. In many
other cases, only a reasonably good �practical� approxima-
tion is desired. This implies accurate mode�s� location�s�,
width and magnitude since this corresponds to the regions in
state space that have the largest probability density.

In the current work, we propose a new approximation
method that involves a combination of the elements used in
DQMOM and the partial PDF approach �25�. The current
proposition is a global approximation method based on a
least-squares minimization. Similar techniques are used in
different fields to approximate functions of different natures
�28–34�. The present approach consists in modeling PDFs as
a sum of smooth functions, with unknown parameters that
are functions of time. In fact, similar PDF representations are
well known in the statistical community, although not ap-
plied to dynamical systems. The notion of decomposing the
PDF into elements is not new �35� and it has been used to
approximate experimentally measured data in geophysical
problems �36�. A good number of properties and limitations
of this technique are known, but roughly speaking, the limi-
tations imposed by the Hausdorff theorem, that applies to all
moment based techniques, can be avoided. The elemental
shape functions used in this method are called kernel density
functions �KDF� �37–39�. It is emphasized that the equations
for the unknown parameters resulting from our approxima-
tion technique are not of the same nature as those from DQ-
MOM or �25�, but they are the result of a minimization prob-
lem in state space. We should mention that a constrained-
minimization technique to derive the weights of the KDF
that best approximate an experimentally measured PDF
given by its moments has been used in the past �39�. This
approach differs from the approach proposed in our current
study in which the minimization is dynamic and based on a
governing differential equation.

II. PROBLEM STATEMENT

As will become apparent in some of the examples to be
presented, it is convenient to consider a generalization of Eq.
�2� in which the state-space variables are partitioned into �
=�L��G with �L= ��1 ,�2 , . . . ,�NL

� and �G

= ��NL+1 ,�NL+2 , . . . ,�N�, where NL�N. The state-space vari-
able �L will be treated in a classical way, while �G will be
treated with the global representation proposed here. Practi-
cally, we should choose NL as small as possible to avoid the
large dimensionality cost of PDF transport equations while
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taking NG=N−NL as large as possible. Eq. �2� is now written
in the form

�P

�t
+

�

��L
�FL��,t�P� + Q��,t,P� = 0, �5�

where P�� ; t�= P��G ;�L , t� denotes a function of �G, �L, and
t. This notation is introduced for convenience to clarify the
developments that follow. The quantity FL denotes that part
of F corresponding to �L and Q is the remaining terms;
generally a linear functional on P that depends explicitly on
�. In some settings, Q can involve state-space derivatives, as
in Eq. �2�, and/or integrals.

We now seek a global approximation of an arbitrary PDF
of the form

P��;t� = �m��L,t�Pm��G,�m��L,t�� , �6�

where m=1, . . . ,M and repeated subscripts imply summa-
tion, unless stated otherwise. Each Pm is a non-negative
function that depends parametrically on �m��L , t�
= ��1

m��L , t� ,�2
m��L , t� , . . . ,�Lm

m ��L , t��. Lm is the dimension of
the vector �m with components � j

m��L , t�. Our function
choice for Pm is such that by construction

�
−�

�

Pm��G,�m�d�G = 1, ∀ m , �7�

with moments given by

�z,m��L,t� = �
−�

�

�zPm��G,�m�d�G. �8�

The normalization condition requires

1 = �
−�

�

���L,t�d�L, �9�

where

���L,t� = �
m=1

M

�m��L,t� , �10�

that along with non-negativity condition of Pm implies �m
�0. It is emphasized that Eq. �6� should not be seen as a
separation-of-variables approximation but as a global ap-
proximation of the Rayleigh-Ritz type. The functions Pm are
specified beforehand and are essentially elementary pre-
sumed PDF functions, or KDF as referred to in the statistical
literature �37�. In general, Eq. �6� does not satisfy Eq. �2�
exactly and a projection technique must be used to determine
the unknown dependent quantities. If necessary, the moments
of the PDF are determined through the familiar formulas,
giving in our case

	�l
z
 = ��−�

�

�l
z���L,t�d�L, for l = 1, . . . ,NL,

�
−�

�

�l
z,m��L,t��m��L,t�d�L, l = NL + 1, . . . ,N ,�

�11�

where angle brackets denote expectations �averages�.
We propose to determine the governing equations for �m

and � j
m in Eq. �6� by a least-squares technique in the �G

domain. We seek the closest approximation to the PDF that
can be obtained at each instant with a function of the form
shown in Eq. �6�. To this end, we define the residual of Eq.
�2� as

r��;t� = Pm
��m

�t
+ �m
 �Pm

�� j
m

�� j
m

�t
+ Q��,t,Pm��

+
�

��L
�FL��,t��mPm� . �12�

Introducing the short-hand notation

��m

�t
= �̇m,

�� j
m

�t
= �̇ j

m, �13�

and

1 = �1,1, . . . ,1�T, �14�

� = ��1,�2, . . . ,�M�T, �15�

� = ��1
1,�2

1, . . . ,�L1

1 ,�1
2,�2

2, . . . ,�L2

2 , . . . ,�1
M,�2

M, . . . ,�LM

M �T,

�16�

P = �P1,P2, . . . ,PM�T, �17�

M =
�P

��

=�
�P1

��1
1

�P1

��2
1 . . .

�P1

��L1

1 0 0 . . . 0 . . .

0 0 . . . 0
�P2

��1
2

�P2

��2
2 . . .

�P2

��L2

2 . . .

0 0 . . . 0 0 0 . . . 0 . . .
� ,

�18�

Q = �Q��,t,Pm��T, �19�

we obtain

r��,�,�,�̇,�̇� = PT�̇ + �TM�̇ + �TQ + �FL�TP��L
.

�20�

An approximation of Eq. �5� can be constructed by making
�r� as small as possible, where � . � is a suitable norm. The
choice of the norm under which r reaches a minimum gen-
erally determines the type of approximation. In our case, we
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choose to minimize the integral of the square residual in �G
space, an approximation which is also known as a least-
squares method. Moreover, we incorporate the normalization
condition, Eq. �9�, using a Lagrange multiplier approach
�40�. The final cost function, at each �L location, is given by

	J��L,�,�,�̇,�̇,
� = �
−�

�

r2d�G + 
�t�1T�̇ , �21�

where 
�t� is a Lagrange multiplier that enforces the con-
straint, through the time rate of change of Eq. �9�, such that
the total cost function is given by

J�t,
� = �
−�

�

	J��L,�,�,�̇,�̇,
�d�L. �22�

The costs functions J coincides with 	J for NL=0. The evo-
lution equations for � and � are derived by developing these
integrals and performing the minimization. We introduce the
scalar, vector and matrix functions

A = �
−�

�

PPTd�G, �23�

B = �
−�

�

MT��TM d�G, �24�

C = 2�
−�

�

MT�PTd�G, �25�

D = 2�
−�

�

��TQ + �FL�TP��L
�P d�G, �26�

E = 2�
−�

�

��TQ + �FL�TP��L
�MT� d�G, �27�

f = �
−�

�

��TQ + �FL�TP��L
�2d�G, �28�

and express Eq. �21� according to

	J = �̇TA�̇ + �̇TB�̇ + �̇TC�̇ + DT�̇ + ET�̇ + f + 
1T�̇ .

�29�

In the case where NL�0, the system must be discretized in
�L space and Eq. �21� must be written in terms of the dis-
cretized variables. The resulting equations are exactly of the
same form except that the integral of the Lagrange multiplier
appearing in the right-hand side of Eq. �22� is transformed
into a sum.

The system of equations governing the evolution of � and
� can be derived by minimizing the quadratic form, Eq. �29�,
with respect to �̇ and �̇. The resulting system of equations,
preserving the parabolic nature of the Liouville equation in
time, is quasilinear with nonlinear coefficients. This system
is given by

�2A CT

C 2B ���̇

�̇
� = − �D + 
I

E
� . �30�

The coefficients resulting from the state-space integration
that appears in the elements of A, B, C, D, and E can be
determined beforehand; currently we use symbolic manipu-
lation software to obtain their algebraic expressions. We ob-
serve that f does not need to be computed. This is fortunate
since it is often the most difficult �nonlinear� quadrature to
calculate. In the rest of the manuscript, we will refer to the
newly introduced method as the least-squares kernel-density
�LSQKD� method.

III. UNIDIMENSIONAL STATE-SPACE EXAMPLE

As an example of the LSQKD technique previously dis-
cussed, we consider a problem first solved analytically by
Ehrendorfer �2�, which is the Liouville equation correspond-
ing to the Riccati ordinary differential equation

Ẋ = aX2 + bX + c , �31�

with X�0�=Xo specified. This initial condition is known
through its PDF, P�Xo ;0�, whose evolution is governed by
the Liouville equation

�P

�t
+

�

��
��a�2 + b� + c�P� = 0. �32�

This equation can be solved by the method of characteristics
�2�, giving

P��;t� =
P��,0�


2 exp�bt +
2r1



ln��a�e−
t − 1� − r2 + r1e−
t�

−
2r2



ln��a�1 − e
t� + r1 − r2e
t�� , �33�

where

���,t� =
1

a

a��r2e
t − r1� + r1r2�e
t − 1�

a��1 − e
t� − r1e
t + r2
� , �34�

and the constants

r1 =
b

2
+ �1/2, r2 =

b

2
− �1/2, 
 = r1 − r2, � =

b2

4
− ac

� 0. �35�

The LSQKD method is now applied to the evolution of
the PDF, Eq. �32�, modeled by a single KDF with a Gaussian
shape of the form

P��;t� = G��,�,�� �
1

�2��
exp
−

�� − ��2

2�2 � , �36�

where � and � are the mean and standard deviation, respec-
tively, which are functions of time. Since the initial condition
has a Gaussian shape �2�, it is reasonable to choose this
function as the approximation. It is noted that there are no
theoretical limitations on the form of the approximating
function, as long as the realizability constraints, i.e., Eqs. �3�
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and �4�, are satisfied. Corresponding to the formulation given
in Sec. II, the constants M =1, L1=2 and the weighting �1
=1 is predetermined since only one presumed function is
used. With the parameters �= �� ,�� and �G= ���, the system
of differential equations �30� is constructed and solved nu-
merically.

After some algebraic manipulations and observing that we
only need to consider the terms involving �t= �̇ since �1 is
constant, we obtain

B =�
1

4���3
0

0
3

8���3
� , �37�

E = �−
2c + 2�b + a��� − a�2

4���3
−

3�2a� + b�
4���2 � , �38�

where B and E are given by Eq. �24� and Eq. �27�, respec-
tively. These quantities are then used to minimize the func-
tional

J = �̇TB����̇ + ET����̇ + f , �39�

that leads to the system of quasilinear differential equations

�̇ = −
1

2
B−1���E��� = �c + b� + a�2 −

a�2

2

�b + 2a���
� . �40�

We present results for the two cases discussed in �2�, both
corresponding to the parameters a=−1, b=1, and c=2 used
in that reference. The initial condition is Gaussian with
��0�=�0.1 and mean distribution ��0�=−2 and ��0�=0 in
the first and second cases, respectively. The calculations are
carried out to t=T, where T=0.3 and 0.6 in the first and
second cases, respectively. These parameters are identical to
those used in �2�.

Figures 1�a� and 1�b� compare the exact results given in
Eq. �33� with the LSQKD method at times T /2 and T during
the evolution. As can be seen, the predictions of the present
method are quite reasonable, given that it has to fit the PDF
form to a single Gaussian shape. Deviation between exact
and approximate results increase, and are more pronounced
as time grows. This deviation is more notable in the tails of
the PDF.

In practice, approximate PDF methods focus on accu-
rately capturing the mode�s� of the PDF. In some cases,
where bifurcation occurs, it is desirable to be able to repro-
duce the dynamics of multimodal behavior, a topic that we
are currently exploring. Additionally, it is important to point
out that the cost of the approximation method we develop
here is small. This cost is comparable to that of solving the
ordinary differential equation Eq. �31�, approximately twice
as that of solving Eq. �31�. This is possible only because all
the quadratures, Eq. �21�, can be analytically performed be-
forehand, in our case using symbolic manipulation software.

IV. MULTIDIMENSIONAL STATE-SPACE EXAMPLE

As a benchmark multidimensional case, the LSQKD
method is applied to the evolution of uncertain initial posi-
tion, velocity and temperature of a particle released in a one-
dimensional fluid flow. This is a one-dimensional model of
more realistic two- and three-dimensional cases which are of
practical interest. Although it may appear that this problem is
too simplistic, the base flow spatial dependence can intro-
duce such a strong nonlinearity that most approximate meth-
ods fail to predict the behavior of the PDF �23�.

Let xp, up, and Tp describe the particle instantaneous po-
sition, velocity and temperature, respectively, governed by

dxp

dt
= up, �41�

dup

dt
=

1

�p
���xp,t� − up� , �42�

dTp

dt
=

1

�T
���xp,t� − Tp� , �43�

where �p=�pdp
2 /18� and �T=Cp�pd2 /12kf are the particle re-

laxation time and the thermal relaxation time, respectively.
The parameters �p and dp representing the density and diam-
eter of the particle, respectively, � denotes the viscosity of
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1.5
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P
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(b)

FIG. 1. PDF evolution at different times for the following cases:
�a� Unstable behavior �evolution from right to left� and �b� stable
behavior �evolution from left to right�. Continuous line denotes ex-
act solution and broken line denotes LSQKD.
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the surrounding fluid phase, Cp is the specific heat of the
particle, and kf is the effective conductivity of the fluid. In
Eq. �42�, � is the velocity field of the fluid phase and ��xp , t�
denotes the fluid-phase velocity at the location of the par-
ticle. Similarly, � denotes the temperature field of the fluid
phase and ��xp , t� denotes the fluid-phase temperature at the
location of the particle. In this formulation, it is assumed that
the force acting on the particle can be approximated by the
Stokes drag only. We also assume that the thermal inertia of
the fluid is large, such that only the particles change their
temperature depending on whether the fluid has a higher or
lower temperature than the particle. The fluid does not
change its thermodynamic state in this approximation. Given
the fluid-phase velocity ��x , t� and temperature ��x , t�, and
initial particle position xp�0�, velocity up�0�, and temperature
Tp�0�, the set of Eqs. �41�–�43� can be solved for xp�t�, up�t�,
and Tp�t�.

Suppose that uncertainties in the initial values of particle
position, velocity, and temperature can be represented by
one-time joint PDF, P�x ,u ,T ; t=0�, where x, u, and T repre-
sent the state-space variables corresponding to xp, up, and Tp,
respectively. Then, P�x ,u ,T ; t� obeys the Liouville equation

�P

�t
+

�

�x
�uP� +

1

�p

�

�u
����x,t� − u�P� +

1

�T

�

�T
����x,t� − T�P�

= 0. �44�

Since T appears explicitly only in divergence form, it is pos-
sible to integrate this equation with respect to T to derive the
transport equation for the marginal P�x ,u ; t�, given by

�P

�t
+

�

�x
�uP� +

1

�p

�

�u
����x,t� − u�P� = 0. �45�

For simplicity, we chose not to denote the PDF appearing in
Eq. �44� and Eq. �45� with different symbols to improve the
fluidity of the text and refer to the solution of Eq. �44� as the
three-dimensional �3D� state-space problem and to the solu-
tion of Eq. �45� as the two-dimensional �2D� state-space
problem.

A. Bidimensional state space case

We consider first the problem of the marginal P�x ,u , t�
obeying Eq. �45� and specialize the fluid-phase velocity to

��x,t� = 1 + � sin�2�x� . �46�

This sinusoidal nonlinearity of � is strong since it cannot be
approximated accurately by a finite-degree polynomial over
the whole range of x. The particle time constant �p is taken
equal to unit in Eq. �45�. This is equivalent to rescaling time
according to t /�p and it does not remove generality from the
present application. With these values for � and �p, the sys-
tem of differential equations �41� and �42� can be solved
numerically for xp�t� and up�t�. Equation �45� can be solved
by the method of characteristics �2� with a specified initial
PDF. Throughout this section, we use the results obtained by
the MC to verify the results predicted by the LSQKD
method. However, for the special case of �=0, there is an

analytical solution of Eqs. �41� and �42� that we use for the
verification of the LSQKD method in this special case.

1. Least-squares global approximation in x-u state space

We choose to approximate P�x ,u ; t� by a bivariate Gauss-
ian of the form

P�x,u;t� = G�y,�� �
exp
−

1

2
yT�−1y�

2��det����1/2,
�47�

where

y = �x − �x�t�,u − �u�t�� , �48�

and � is the time-dependent covariance matrix

� = � �x
2�t� �x�t��u�t���t�

�x�t��u�t���t� �u
2�t�

� , �49�

with −1���t��1. The constants M =1, L1=5, and the pa-
rameter vectors are �1=1 and �= ��x ,�x ,�u ,�u ,��. Accord-
ing to the formulation given in Sec. II, we have chosen �
=�G= �x ,u�; both state-space variables are treated globally in
this case.

For the special case of �=0, the system of equations �41�
and �42� can be solved analytically when ��x�=1, giving

xp�t� = �1 − up�0���exp�− t� − 1� + t + xp�0� , �50�

up�t� = �up�0� − 1�exp�− t� + 1, �51�

where xp�0� and up�0� are the initial position and velocity of
the particle, respectively. Since, Eqs. �50� and �51� are linear
in xp�0� and up�0�, an exact expression can be developed for
the mean particle position 	xp
 and mean particle velocity
	up
 by ensemble averaging of these expressions, giving

	xp
�t� = �1 − 	up
�0���exp�− t� − 1� + t + 	xp
�0� , �52�

	up
�t� = �	up
�0� − 1�exp�− t� + 1, �53�

where 	xp
�0� and 	up
�0� denote the initial mean position
and velocity of the one-dimensional particle, respectively.
The second order central moments are given by

	xp�
2
�t� = 	up�

2
�0��exp�− t� − 1�2 − 2	xp�up�
�0��exp�− t� − 1�

+ 	xp�
2
�0� , �54�

	up�
2
�t� = 	up�

2
�0�exp�− 2t� , �55�

	xp�up�
 = 	up�
2
�0��exp�− 2t� − exp�− t�� + 	xp�up�
�0�exp�− t� ,

�56�

where 	xp�
2
= 	�xp− 	xp
�2
, 	up�

2
= 	�up− 	up
�2
, and 	xp�up�

= 	�xp− 	xp
��up− 	up
�
. These analytical solutions are com-
pared against the results obtained by the LSQKD method
using the bivariate Gaussian PDF with initial condition
�x�0�=1, �u�0�=2, �x�0�=1, �u�0�=�0.2, and ��0�=0.5,
which are defined in Eqs. �47�–�49�. Figure 2�a� shows the
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time evolution of the mean position and velocity of the par-
ticle obtained through the exact solution and the proposed
approximation. Figure 2�b� shows comparisons of the time
evolution of the elements of the covariance matrix as well.
As can be seen, the agreement is good in this case. We cau-
tion that this is not completely surprising since the uncer-
tainty in the initial conditions affects the solution linearly.

For the more general case there is no exact analytical
solution for the system of equations �41� and �42� where
��x�=1+� sin�2�x� with ��0. Therefore we compare the
results obtained by the model proposed in this work to those
obtained by the classical method of characteristics �MC�
�2,6�. At regular intervals in time, the mean and covariance
matrix of the positions and velocities of particles are calcu-
lated. Figure 3 shows the time evolution of the mean and
variance of the particle position and velocity obtained by
LSQKD method and exact solution obtained by MC. In the
case shown in this figure �=0.5, �x�0�=�u�0�=1, �x�0�
=�u�0�=�0.05, and ��0�=0. We observe that the method is
able to reproduce the behavior of the means quite accurately
but obvious deficiencies are observed for the position vari-
ance after some short time. As we will show shortly, these
results are not a consequence of a shortcoming in the meth-
odology we present, but rather, a failure of our function
choice for the PDF.

2. Least-squares approximation in u space only

The previous example shows that the LSQKD approxima-
tion can fail when the function ansatz is unable to accommo-

date the features of the PDF, induced by the strong nonlin-
earity of ��x�. The nonlinearity makes the popular method
based on polynomial chaos expansions, impractical for un-
certainty quantification in this case. We now proceed to de-
scribe the more appropriate function choice for such a non-
linear case using the LSQKD method where only the
velocity state-space coordinate is treated globally and posi-
tion is dealt with locally.

The PDF is now approximated by a function of the form

P�x,u;t� = ��x,t�G�u,��x,t�,��x,t�� . �57�

Corresponding to the notation introduced is Sec. II, NL=1,
�L= �x�, �G= �u�, with FL=u,

� = ���x,t�,��x,t��T, �58�

M = � �G

��
,
�G

��
� , �59�

and

Q�G� =
�

�u
���x� − u

�p
G� . �60�

After simplifying the least-squares equations it is possible to
directly solve for the Lagrange multiplier, 
�t�=0 in this
case, and obtain

��

�t
+

�����
�x

= 0, �61�
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FIG. 2. Time evolution of �a� mean and �b� variances of the
particle position and velocity for �=0 using exact �symbols� and
LSQKD �solid lines�.
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FIG. 3. Evolution of �a� mean and �b� variances of particle po-
sition and velocity for �=0.5 using MC �symbols� and LSQKD
�solid lines�.
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��

�t
+ �

� ln �

�x
+

�

2

��

�x
+ �

��

�x
=

��x� − �

�p
, �62�

��

�t
+

�����
�x

= −
�

�p
. �63�

Furthermore, the statistical moments are calculated accord-
ing to

	xp
�t� = �
−�

�

x��x,t�dx , �64�

	up
�t� = �
−�

�

��x,t���x,t�dx , �65�

	xp�
2
�t� = �

−�

�

x2��x,t�dx − 	xp
�t�2, �66�

	up�
2
�t� = �

−�

�

��2�x,t� + �2�x,t����x,t�dx − 	up
�t�2,

�67�

and

	xp�up�
�t� = �
−�

�

x��x,t���x,t�dx − 	xp
�t�	up
�t� . �68�

Figure 4 shows the time evolution of the moments with iden-
tical initial conditions as those used in the previous subsec-
tion for the case with �=0.5. Equations �61�–�63� are solved
by the MC for first-order quasilinear systems of hyperbolic
equations �41�. As seen in Fig. 4�b� there is now an improved
agreement between the two methods.

Figure 5 presents isocontours of P�x ,u ; t� at three differ-
ent times. The initial condition, t=0, corresponds to a bivari-
ate Gaussian distribution, which is not shown in this figure.
The shape of the PDF deviates strongly from Gaussian as
time progresses and eventually evolves into an M shape at
t=3. It is observed that the new method is able to capture this
feature and shows reasonably good agreement with the MC
solution.

Further comparisons of the statistics can be derived using
the conditional PDFs, defined by

Px�u�x�u;t� =
P�x,u;t�
Pu�u;t�

�69�

and

Pu�x�u�x;t� =
P�x,u;t�
Px�x;t�

, �70�

where Px�u and Pu�x denote conditional PDFs and Pu�u ; t�
=�−�

� P�x ,u ; t�dx and Px�x ; t�=�−�
� P�x ,u ; t�du are the mar-

ginal PDFs. The marginal P�x ; t�=��x� in the LSQKD
method represents the number density of particles in the Eu-
lerian description of particle systems. It is noted that Pu�x
=G�u ,��x , t� ,��x , t�� is Gaussian according to Eq. �57�.

Figure 6 shows the conditional PDFs, Px�u and Pu�x, at t
=1, 2, and 3. It is seen that LSQKD predicts Px�u and Pu�x
reasonably well. Moreover, the multimodal shape of Px�u is
well predicated by the LSQKD approximation as seen in
Figs. 6�a�–6�c�. In fact, as time progresses the number of
modes increases for Px�u. On the other hand, Pu�x remains
unimodal with increasing time. Pu�x obtained by MC is
slightly skewed at all times and the conditional PDF deviates
from a Gaussian function as observed in Figs. 6�a�–6�f�.

B. Three-dimensional state-space example

We now consider application of the LSQKD approach to
the three-dimensional state-space equation, Eq. �44�, using a
bivariate Gaussian kernel density in the u- and T-state space
dimensions of the form

P�x,u,T;t� = ��x,t�
exp
−

1

2
yT�−1y�

2��det����1/2 , �71�

where

y = �u − �u�x,t�,T − �T�x,t�� , �72�

and � is the time-dependent covariance matrix
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FIG. 4. Evolution of �a� mean and �b� variances of particle po-
sition and velocity for �=0.5 using MC �symbols� and LSQKD
�solid lines�.

CARLOS PANTANO AND BABAK SHOTORBAN PHYSICAL REVIEW E 76, 066705 �2007�

066705-8



� = � �u
2 �u�T tanh���

�u�T tanh��� �T
2 � , �73�

with �u�x , t� ,�T�x , t��0, and ��x , t� unconstrained. Use of a
hyperbolic tangent mapping for the correlation coefficient
was employed for convenience since it ensures the realizabil-
ity constraint of the u-T covariance at all times. The system
of equations derived by the LSQKD method with �G
= �u ,T�, reads

��

�t
+

���u��
�x

= 0, �74�

��u

�t
+ �u

2� ln �

�x
+ �u

��u

�x
+

�u

2

��u

�x
−

�u
2

2�T

��T

�x

+
�u

2

2
tanh���

��

�x
=

��x,t� − �u

�p
, �75�

��T

�t
+ �u�T tanh���

� ln �

�x
+ �u

��T

�x
+

�u�T

2

��

�x
=

��x,t� − �T

�T
,

�76�

��u

�t
+

���u�u�
�x

= −
�u

�p
, �77�

��T

�t
+ �u tanh���

��T

�x
+ �u

��T

�x
= −

�T

�T
, �78�

��

�t
+

�u

�T

��T

�x
+ �u

��

�x
= 0. �79�

As is apparent by inspecting Eqs. �74�–�79�, the main advan-
tage of the LSQKD approximation method is that the three-
dimensional Eq. �44� has been transformed into five one-
dimensional equations.

The approximation is tested for the case of particles re-
leased in a flow with a time-dependent analytical solution of
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PDF obtained by MC and LSQKD
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inviscid flow, given by Riemann �1860� �42�. This corre-
sponds to unidirectional flow in a periodic domain with ve-
locity and temperature solutions given by the implicit rela-
tionships

��x,t� = v = F
x − �co +

 + 1

2
v�t� �80�

and

��x,t� = T = To�1 +

 − 1

2
v/co�2

, �81�

respectively. The initial condition is chosen to be F�x , t=0�
=uo sin��x�. We integrate Eqs. �74�–�79� using the MC. The
parameters used in the evaluation of the method for this
three-dimensional state-space problem are chosen as co=1,
uo=0.5, �p=1, �T=0.5, 
=1.4, and To=1. Since this flow
develops a shock front at t=2 / �uo��
+1���0.53, and we
have not explored the method in this regime, the time inte-

gration was carried out up to t=0.5. Figure 7 shows isosur-
faces of the final joint PDF when the system is initialized
with �u=0, �T=0.5, �u�x ,0�=�0.05, �T�x ,0�=�0.1,
��x ,0�=0, and ��x ,0�=G�x ,0 ,�0.05�. Figure 7�a� shows the
isosurface P�x ,u ,T ,0.5�=0.1 using the MC and Fig. 7�b�
shows the same iso-surface using LSQKD; in both cases the
surfaces are shown at different angles. We observe that both
surfaces are very similar; a result that applies to other isos-
urface values, not shown. Table I shows comparisons of all
means, variances and correlations between MC and LSQKD
at t=0.5. Reasonable agreement is observed for the low-
order moments with relative errors about 0.5% for the
means, 0.6% for variances, and up to 1.3% for correlations.

V. DISCUSSION

The computational cost of the approximation method is an
important aspect to consider, specially in higher dimensions.
We have not investigated exhaustively all computational
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FIG. 6. Conditional PDFs; Px�u
at �a� t=1, �b� t=2, and �c� t=3
evaluated at the corresponding
Px�u�x � 	up
�t� ; t� and Pu�x at
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evaluated at the corresponding
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considerations of the method in this articlea since we have
concentrated on the presentation of the method and its appli-
cation to a few model problems. From the outset, the savings
of the LSQKD are related to the effect of reducing the di-
mensionality of the method while increasing the number of
global parameters. This has to be compared with Liouville’s
equation, which is a variable coefficient linear equation on
the PDF, while the LSQKD method produces quasi-linear
systems of equations �coefficients that depend on the depen-
dent variables�. In our case, we used a Mathematica™ script
to implement all the algorithms and measured 5 s for case
2D using MC and 379 seconds using LSQKD. The results

are different for the 3D case, where we measured
5356 seconds using MC and 427 using LSQKD. The dis-
cretization of state-space was done consistently by taking the
same grid spacing in all cases, with 412 and 413 grid points
for the cases using MC, respectively, and 200 grid points for
LSQKD. We observe that solving Eq. �45� by MC is more
efficient in two dimensions while a dramatic saving is ob-
served for the three-dimensional case Eq. �44�. Evidently
solving the quasi-linear equations of LSQKD is not effective
in the two-dimensional case but this is quickly overcome in
higher dimensions, since the LSQKD cost grows only with
the number of parameters and not the dimensionality of the
Liouville equation. Note that the time required to obtain the
two-dimensional solution up to t=3 is similar to that of the
three-dimensional problem up to t=0.5 simply because solv-
ing the velocity and temperature fields, Eqs. �80� and �81�,
requires substantially more time than Eq. �46�.

A second aspect of the LSQKD method concerns a per-
ceived limitation of the generality of the method; a feature of
Rayleigh-Ritz methods. In practice this is not really an ob-
stacle since there is always information about the behavior of
the PDF: From the initial and boundary data and by repeat-
edly solving the equations with increasing resolution; some-
thing that is systematically performed with classical meth-
ods. In Rayleigh-Ritz methods, increasing the number of trial
functions or the number of parameters in the trial functions
plays the same role. This approach appears to be less robust,
but it is conceptually analogous to increasing resolution. In
some cases, it is known that the PDF is unimodal, bimodal or
multimodal and this information can help to reduce the cost
of solving the multidimensional transport equation for the
PDF. Moreover, a global formulation based on a least-
squares method already provides a metric of the error. There-

TABLE I. Comparison of means, variances and correlations us-
ing MC and LSQKD at t=0.5. Quantities obtained by discretizing
the joint PDF on 413 grid points centered around the means and
extending approximately three standard deviations for both
methods.

MC LSQKD

	xp
 −0.01695 −0.01704

	up
 −0.08664 −0.08704

	Tp
 0.75977 0.75980

	xp�
2
 0.06891 0.06898

	up�
2
 0.02757 0.02774

	Tp�
2
 0.01569 0.01565

	xp�up�
 0.03043 0.03066

	xp�Tp�
 0.01074 0.01079

	up�Tp�
 0.00456 0.00462

	xp�up�Tp�
 0.02285 0.02302

(a) (b)

FIG. 7. �Color online� Isosurface of joint position, velocity and temperature PDF, P�x ,u ,T ; t�=0.1, at t=0.5: �a� From the method of
characteristics and �b� from LSQKD. Each subfigure contains four views of the same isosurface at different angles to aid in the understanding
of the surface.
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fore, it can be used to determine whether the trial functions,
the KDFs in our case, need to be expanded. This is shown in
Fig. 8 for both the 2D and 3D examples. The quantity shown
in this figure is the maximum normalized square residual,
Eq. �21�, over the u and u-T state space as a function of time
for the 2D and 3D case, respectively. This is not the error of
the PDF but the residual of the transport equation normalized
with �p�x�0���u�0� and ��p�T�x�0���u�0��T�0�, respec-
tively. In Sec. IV A 2, the accuracy of the approximation was
carefully compared with the MC solution and we observe
that the residual of the 3D case is similar to that of the 2D
case, therefore justifying the approximations used.

Furthermore, we have verified that the approximation
method based on Dirac’s delta functions �DQMOM� can be
identified with the distinguished limit of LSQKD when using
Gaussian KDFs by taking the variance of the Gaussian to the
infinitesimally small limit. The Dirac’s delta approximation
can be recovered in this way without recurring to moment
methods explicitly.

Some aspects of the technique presented here that have
not been explored include the extension of the present
method to bounded state space, instead of the infinite state
space considered in this paper. The main difference is that
the KDFs must be bounded to the realizability limits of the
state space and the quadratures get affected accordingly. The
use of more complicated KDFs, for example using three or
four parameters, is subject of ongoing research as is the ap-
plications where some of the quadratures involved in the
least-squares formulation cannot be determined beforehand.
In this case, one can use efficient numerical quadratures
since the integral kernels are known. The extension to propa-
gation of uncertainty in boundary conditions of systems gov-
erned by partial differential equations is also of interest as
well as the ability of one function to adapt depending on the
behavior of the solution. Finally, another aspect that will be
considered in the future is the behavior of the method for
very large times, since this is relevant in some problems.

VI. CONCLUSIONS

We present a new approximation technique based on a
least-squares method aiming at solving the Liouville equa-

tion encountered in the evolution of uncertainty in the initial
condition of dynamical systems. The method uses the kernel
density function approximation, an ansatz utilized in statis-
tics to approximate the PDF. These presumed shapes are then
combined with a least-squares method to determine the evo-
lution equations of the parametrizations of the kernel density
functions so that the integrated state-space square error is
minimized. In general, the minimization is constrained by
the normalization condition of the PDF and requires a
Lagrange multiplier approach. This can be handled within
the same framework without difficulty. The system of equa-
tions resulting from the minimization is linear with respect to
the rate of change of the parameters. The coefficients of the
system can be nonlinear functions of these parameters. In
general, these nonlinear coefficients are obtained from a
number of quadratures involving the presumed shaped of the
kernel density functions. The main advantage of the method
is that, by appropriately choosing the kernel density func-
tions, all the quadratures can be performed explicitly before-
hand. Currently, this is carried out with the aid of symbolic
manipulation software owing to the complexity of the ex-
pressions. It is important to realize that these integrals are
performed only once �as part of the setup of the problem�
and the only cost of marching the equations in time is asso-
ciated with solving the system of equations for the rates of
change of the parameters. Therefore, the cost of the method
is roughly proportional to the number of parameters used to
model the PDF and it has the same dimensionality of the
original deterministic equations that originate the PDF trans-
port equation. Moreover, since the integrated least-squares
residual in state space is known, one can obtain an error
metric with little additional cost.

Three problems are considered as models of systems en-
countered in practice. In the first case we solve the Liouville
equation of a system governed by a Riccati equation with
initial conditions centered around stable and unstable orbits.
The results obtained with the present method for the simplest
choice of kernel density function, which is Gaussian, is com-
pared with the analytical solution. It is shown that the results
are reasonably good, specially given the crude approximat-
ing function used. The second problem involves the Liou-
ville equation in a two- and three-dimensional state space.
This problem corresponds to a one-dimensional model of a
particle moving in a fluid under the influence of the Stokes
force without and with particle internal energy interactions
with the flow. In the case that the flow is uniform with con-
stant velocity, a bivariate Gaussian function used in the least-
squares approximation is able to predict analytical results
while in the case the fluid phase is a nonlinear function, it is
not. A better approximation using the least-squares method in
the velocity state space gives improved results for this
strongly nonlinear forcing case. The improvement is traced
to the ability of PDF function to reproduce, or accommodate,
the actual joint PDF behavior. The same approach is then
used for the particle dynamics including energy exchanges
with the fluid with satisfactory results.
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